Autoimmune Polyendocrine Syndromes

Eystein S. Husebye, M.D., Ph.D., Mark S. Anderson, M.D., Ph.D., and Olle Kämpe, M.D., Ph.D.

AUTOIMMUNE POLYENDOCRINE SYNDROMES COM普ICE A DIVERSE GROUP of clinical conditions characterized by functional impairment of multiple endocrine glands due to loss of immune tolerance. These syndromes also frequently include conditions such as alopecia, vitiligo, celiac disease, and autoimmune gastritis with vitamin B12 deficiency that affect nonendocrine organs. Failure of multiple glands in an individual patient was first described by Schmidt, who in 1926 reported the combination of hypothyroidism and adrenal insufficiency with lymphocytic infiltration of both the thyroid and adrenal glands. We have now come to appreciate that these syndromes can be broadly categorized as rare monogenic forms, such as autoimmune polyendocrine syndrome type 1 (APS-1), and a more common polygenic variety, autoimmune polyendocrine syndrome type 2 (APS-2).

Autoimmune polyendocrine syndromes are insidious and are characterized by circulating autoantibodies and lymphocytic infiltration of the affected tissues or organs, eventually leading to organ failure. The syndromes can occur in patients from early infancy to old age, and new components of a given syndrome can appear throughout life. There is marked variation in the frequencies and patterns of autoimmunity in affected patients and their families, and the risk of the development of various organ-specific autoimmune diseases is most likely due to a combination of genetic susceptibility and environmental factors.

Monogenic autoimmune polyendocrine syndromes have provided an opportunity to learn more about specific factors that are critical for maintaining immune tolerance. In parallel, major advances in characterizing autoimmunity in patients, such as the identification of new autoantibody targets associated with distinct diseases and their manifestations, have occurred. This article reviews some of these important developments and discusses approaches for the appropriate diagnosis and longitudinal follow-up of affected patients.

AUTOIMMUNE POLYENDOCRINE SYNDROME TYPE 1

APS-1, also named autoimmune polyendocrinopathy–candidiasis–ectodermal dysplasia (APECED; Online Mendelian Inheritance in Man [OMIM] number, 240300), is a rare autosomal recessive disease caused by mutations in the autoimmune regulator gene (AIRE). The estimated prevalence is roughly 1:100,000 in most countries, with a higher prevalence in some countries such as Finland (1:25,000) and Sardinia (1:14,000) and among Persian Jews living in Israel (1:9000).

CLINICAL FEATURES

APS-1 is characterized by the development of at least two of three cardinal components during childhood — chronic mucocutaneous candidiasis, hypoparathyroidism, and primary adrenal insufficiency (Addison’s disease). Other typical components include enamel hypoplasia and enteropathy with chronic diarrhea or...
constipation. Primary ovarian insufficiency, affecting approximately 60% of women with APS-1 before they reach 30 years of age (Fig. 1), is common. Other classic components are less frequent but may include bilateral keratitis, often accompanied by severe photophobia, and periodic fever with rash, as well as autoimmune-induced hepatitis, pneumonitis, nephritis, exocrine pancreatitis, and functional asplenia.5-9 Such findings should prompt clinicians to consider the diagnosis of APS-1, especially in young persons. On rare occasions, retinitis, metaphyseal dysplasia, pure red-cell aplasia,8 and polyarthritis10 have been associated with APS-1 (Fig. 1).

Several case series indicate that the phenotype and age at symptom onset vary greatly, even within the same family,6-8,11 implying that other genes, such as major histocompatibility complex genes,12 or environmental exposures influence the phenotype and natural course. For example, a recent Norwegian survey reported that all three main components of APS-1 developed in only 40% of affected patients.6 In some affected persons, a single minor component develops during childhood and the first main manifestation later, during adulthood. This wide variation in presentation and symptomatology makes the diagnosis of APS-1 challenging.

In most patients with APS-1, disease manifestations develop earlier and are usually more severe than in patients with APS-2. Typically in a given patient with APS-1, an average of 4 or 5 manifestations of the syndrome develop, but as few as 1 or as many as 20 may occur. Owing to chronic mucocutaneous candidiasis, patients are also susceptible to squamous-cell carcinoma of the oral mucosa and esophagus over time. As compared with the general population, patients with APS-1 have an increased rate of death due to cancer,13 adrenal and hypocalcemic crises, and certain conditions induced by aberrant autoimmune responses, particularly hepatitis, nephritis, and pneumonitis.

GENETICS AND DISEASE MECHANISMS

The basis for the spectrum of pleomorphic autoimmune manifestations of APS-1 has become clearer from studies of the defective gene in patients (AIRE) and mouse models (Aire). Aire, which is expressed in thymic medullary epithelial cells14 and in a rare population of peripheral dendritic cells,15 mediates the ectopic expression of thousands of otherwise tissue-restricted proteins, enabling their peptides to be displayed to developing T cells (Fig. 2A). Such unique antigen presentation helps to promote the negative selection of autoreactive thymocytes, as well as self-tolerance (i.e., a process that keeps the immune system from attacking the body’s own tissues and organs). Thus, if Aire is nonfunc-
A lack of Tregs also contributes to autoimmunity. Panel B (top) shows how FoxP3+ Tregs harness autoreactive T cells by interacting with antigen-presenting cells (APCs). FoxP3 mutations (Panel B, bottom) or mutations in other genes that are key to the function of Tregs (cytotoxic T-lymphocyte antigen 4 [Ctla-4] and CD25) remove the inhibition of autoreactive T cells, which then cause autoimmune reactions and APS-1. A lack of Tregs also contributes to autoimmunity. Panel C shows signal transducers and activators of transcription (Stats), which are transducers of cell-surface cytokine signaling. Stats interact with interferon and interleukin receptors at the cell surface. After phosphorylation by Janus kinases, Stats dimerize and translocate to the nucleus. Mutations that lead to constitutively active forms of Stat1 or Stat3 promote autoimmunity; loss-of-function mutations in Stat5b also lead to autoimmunity. The exact mechanisms need to be further dissected, but loss of Stat5b could be due to the improper expression of FoxP3, a known target of Stat5b.

Figure 2. Key Immunoregulatory Pathways Involved in the Pathogenesis of Autoimmune Polyendocrine Syndromes.

Panel A (top) shows that in cases of normal central immune tolerance, the autoimmune regulator (Aire) that is expressed in medullary thymic epithelial cells (mTEC) promotes expression of tissue-specific antigens, which are displayed on the surface. Autoreactive T cells with affinity for self-proteins either die by apoptosis or become forkhead box P3 (FoxP3)–expressing regulatory T cells (Tregs). When Aire is lacking (Panel A, bottom), the tissue-specific antigens are not displayed on the mTEC surface and autoreactive T cells escape to the general circulation and peripheral lymphoid organs, where they can cause autoimmune reactions and APS-1. A lack of Tregs also contributes to autoimmunity. Panel B (top) shows how FoxP3+ Tregs harness autoreactive T cells by interacting with antigen-presenting cells (APCs). FoxP3 mutations (Panel B, bottom) or mutations in other genes that are key to the function of Tregs (cytotoxic T-lymphocyte antigen 4 [Ctla-4] and CD25) remove the inhibition of autoreactive T cells, which then cause autoimmunity and IPEX and IPEX-like syndromes. Panel C shows signal transducers and activators of transcription (Stats), which are transducers of cell-surface cytokine signaling. Stats interact with interferon and interleukin receptors at the cell surface. After phosphorylation by Janus kinases, Stats dimerize and translocate to the nucleus. Mutations that lead to constitutively active forms of Stat1 or Stat3 promote autoimmunity; loss-of-function mutations in Stat5b also lead to autoimmunity.

The exact mechanisms need to be further dissected, but loss of Stat5b could be due to improper expression of FoxP3, a known target of Stat5b.

Figure 2. Key Immunoregulatory Pathways Involved in the Pathogenesis of Autoimmune Polyendocrine Syndromes.

Panel A (top) shows that in cases of normal central immune tolerance, the autoimmune regulator (Aire) that is expressed in medullary thymic epithelial cells (mTEC) promotes expression of tissue-specific antigens, which are displayed on the surface. Autoreactive T cells with affinity for self-proteins either die by apoptosis or become forkhead box P3 (FoxP3)–expressing regulatory T cells (Tregs). When Aire is lacking (Panel A, bottom), the tissue-specific antigens are not displayed on the mTEC surface and autoreactive T cells escape to the general circulation and peripheral lymphoid organs, where they can cause autoimmune reactions and APS-1. A lack of Tregs also contributes to autoimmunity. Panel B (top) shows how FoxP3+ Tregs harness autoreactive T cells by interacting with antigen-presenting cells (APCs). FoxP3 mutations (Panel B, bottom) or mutations in other genes that are key to the function of Tregs (cytotoxic T-lymphocyte antigen 4 [Ctla-4] and CD25) remove the inhibition of autoreactive T cells, which then cause autoimmunity and IPEX and IPEX-like syndromes. Panel C shows signal transducers and activators of transcription (Stats), which are transducers of cell-surface cytokine signaling. Stats interact with interferon and interleukin receptors at the cell surface. After phosphorylation by Janus kinases, Stats dimerize and translocate to the nucleus. Mutations that lead to constitutively active forms of Stat1 or Stat3 promote autoimmunity; loss-of-function mutations in Stat5b also lead to autoimmunity.

The exact mechanisms need to be further dissected, but loss of Stat5b could be due to improper expression of FoxP3, a known target of Stat5b.

Aire deficiency
Autoreactive T cells
mTEC
Cortex
Medulla
Tissue-specific antigens
Aire
FoxP3
Autoimmunity
Death

B Peripheral T-Cell Tolerance
Autoreactive T cell
Self-peptide
CD25
ACP
FoxP3
Ctla-4
Treg
T cells
Activation
Autoimmunity

C Stat Signaling and Autoimmunity
Interferon-αβ
Interferon-γ
Interleukin-2
Interleukin-6
Interleukin-12
Interleukin-22
Interleukin-23
Stat1
Stat5b
Stat3
Autoimmunity

Figure 2. Key Immunoregulatory Pathways Involved in the Pathogenesis of Autoimmune Polyendocrine Syndromes.

Panel A (top) shows that in cases of normal central immune tolerance, the autoimmune regulator (Aire) that is expressed in medullary thymic epithelial cells (mTEC) promotes expression of tissue-specific antigens, which are displayed on the surface. Autoreactive T cells with affinity for self-proteins either die by apoptosis or become forkhead box P3 (FoxP3)–expressing regulatory T cells (Tregs). When Aire is lacking (Panel A, bottom), the tissue-specific antigens are not displayed on the mTEC surface and autoreactive T cells escape to the general circulation and peripheral lymphoid organs, where they can cause autoimmune reactions and APS-1. A lack of Tregs also contributes to autoimmunity. Panel B (top) shows how FoxP3+ Tregs harness autoreactive T cells by interacting with antigen-presenting cells (APCs). FoxP3 mutations (Panel B, bottom) or mutations in other genes that are key to the function of Tregs (cytotoxic T-lymphocyte antigen 4 [Ctla-4] and CD25) remove the inhibition of autoreactive T cells, which then cause autoimmunity and IPEX and IPEX-like syndromes. Panel C shows signal transducers and activators of transcription (Stats), which are transducers of cell-surface cytokine signaling. Stats interact with interferon and interleukin receptors at the cell surface. After phosphorylation by Janus kinases, Stats dimerize and translocate to the nucleus. Mutations that lead to constitutively active forms of Stat1 or Stat3 promote autoimmunity; loss-of-function mutations in Stat5b also lead to autoimmunity. The exact mechanisms need to be further dissected, but loss of Stat5b could be due to the improper expression of FoxP3, a known target of Stat5b.

Aire deficiency
Autoreactive T cells
mTEC
Cortex
Medulla
Tissue-specific antigens
Aire
FoxP3
Autoimmunity
Death

B Peripheral T-Cell Tolerance
Autoreactive T cell
Self-peptide
CD25
ACP
FoxP3
Ctla-4
Treg
T cells
Activation
Autoimmunity

C Stat Signaling and Autoimmunity
Interferon-αβ
Interferon-γ
Interleukin-2
Interleukin-6
Interleukin-12
Interleukin-22
Interleukin-23
Stat1
Stat5b
Stat3
Autoimmunity

Figure 2. Key Immunoregulatory Pathways Involved in the Pathogenesis of Autoimmune Polyendocrine Syndromes.

Panel A (top) shows that in cases of normal central immune tolerance, the autoimmune regulator (Aire) that is expressed in medullary thymic epithelial cells (mTEC) promotes expression of tissue-specific antigens, which are displayed on the surface. Autoreactive T cells with affinity for self-proteins either die by apoptosis or become forkhead box P3 (FoxP3)–expressing regulatory T cells (Tregs). When Aire is lacking (Panel A, bottom), the tissue-specific antigens are not displayed on the mTEC surface and autoreactive T cells escape to the general circulation and peripheral lymphoid organs, where they can cause autoimmune reactions and APS-1. A lack of Tregs also contributes to autoimmunity. Panel B (top) shows how FoxP3+ Tregs harness autoreactive T cells by interacting with antigen-presenting cells (APCs). FoxP3 mutations (Panel B, bottom) or mutations in other genes that are key to the function of Tregs (cytotoxic T-lymphocyte antigen 4 [Ctla-4] and CD25) remove the inhibition of autoreactive T cells, which then cause autoimmunity and IPEX and IPEX-like syndromes. Panel C shows signal transducers and activators of transcription (Stats), which are transducers of cell-surface cytokine signaling. Stats interact with interferon and interleukin receptors at the cell surface. After phosphorylation by Janus kinases, Stats dimerize and translocate to the nucleus. Mutations that lead to constitutively active forms of Stat1 or Stat3 promote autoimmunity; loss-of-function mutations in Stat5b also lead to autoimmunity. The exact mechanisms need to be further dissected, but loss of Stat5b could be due to the improper expression of FoxP3, a known target of Stat5b.
Autoimmune Polyendocrine Syndromes

APS-1, the condition remains undiagnosed. In many families with "nonclassic" dominant ovarian insufficiency, pointing to possible commonalities in the pathogenesis of these various entities.

In contrast to the autoantibodies mentioned above, systemic autoantibodies to certain cytokines are highly prevalent in many, if not most, patients with APS-1. Autoantibodies to type 1 interferons, namely interferon-ω and interferon-α, are the most prevalent type of autoantibody in APS-1 and are present in almost all patients (except those with dominant negative mutations). In addition to being seen in APS-1, interferon antibodies are also consistently seen in myasthenia gravis and thymomas, as well as in patients with so-called "mild" recombination activating gene (RAG) mutations. In patients with APS-1, autoantibodies to the interleukin-17 family of cytokines, especially interleukin-22, reach a prevalence exceeding 90% in some series.

In our experience, the diagnosis of APS-1 is often delayed and sometimes made only after the death of the patient, on diagnosis of a sibling. Availability of AIRE sequencing and specific autoantibody tests have uncovered milder and more atypical cases of APS-1 in persons without two of the three main components. In such patients, minor components can be very helpful diagnostic hints. Some minor components of APS-1 develop early in life (keratitis, periodic fever with rash, and autoimmune hepatitis), whereas others occur later (primary ovarian insufficiency in patients younger than 30 years of age and enamel hypoplasia). Since more than 95% of patients with APS-1 have autoantibodies to type 1 interferons, broad testing for such antibodies in suspected cases may be useful. In Figure 3, we summarize current knowledge in a diagnostic workup scheme. A widely available test to detect autoantibodies quickly would be a cost-effective tool for first-line screening before genetic testing.

X-Linked Immunodysregulation, Polyendocrinopathy, and Enteropathy

X-linked immunodysregulation, polyendocrinopathy, and enteropathy (IPEX) (OMIM number, 304790) is an extremely rare inherited syndrome characterized by early-onset type 1 diabetes, autoimmune enteropathy with intractable diarrhea and malabsorption, and dermatitis that may be eczematiform, ichthyosiform, or psoriasiform. Eosinophilia and elevated IgE levels are frequently present in patients with IPEX. Kidney disease, most often membranous glomerulonephritis or interstitial nephritis, develops in some patients. Later manifestations of the syndrome may include autoimmune thyroid disease, alopecia, various
autoimmune cytopenias, hepatitis, and exocrine pancreatitis.41 Many features overlap with APS-1, but they usually develop much earlier in life than in APS-1. IPEX is frequently fatal in the first few years of life unless patients are promptly treated with immunosuppressive agents or, if possible, with allogeneic bone marrow transplantation, which can cure the disease.41

A mouse model of a spontaneously occurring X-linked disease similar to IPEX is called Scurfy. With the use of genetic mapping studies, the defective gene was mapped to mutations in the Foxp3 gene in Scurfy mice and FOXP3 in patients with IPEX.42-44 To date, about 70 different mutations have been reported in patients. FOXP3 is currently recognized as a master transcription factor that is highly expressed in CD4+ Tregs45 along with other Treg elements, including cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and CD25, the high-affinity interleukin-2 receptor (Fig. 2B). The importance of CD25 in Treg function has been underscored by the case of a woman presenting with IPEX-like features who had mutations in the CD25 gene, which is not on the X chromosome,46 and emphasizes the importance of interleukin-2 in promoting Treg survival and function.

In patients with IPEX, as in those with APS-1, circulating autoantibodies develop that can be helpful in making the diagnosis. The majority of patients with IPEX have autoantibodies against harmonin and villin,47 proteins that are part of the molecular machinery involved in the organization and stabilization of the microvilli of the intestinal brush border. These proteins are also expressed in the renal proximal tubule, which may be associated with the high prevalence of enteropathy and nephritis in these patients. Some patients with IPEX have autoantibodies at a very early age, even a few weeks after birth, that are present in type 1 diabetes, including glutamic acid decarboxylase 65 and islet-cell antibodies.

Despite the rarity of IPEX, studies of affected patients have revealed a key pathway for self-tolerance (Fig. 2B) that has aided in the understanding of Tregs and has led to research aimed at the development of methods to enhance Treg function in transplantation and as a treatment for autoimmune disorders.48,49

Table 1. Classification and Characteristics of Autoimmune Polyendocrine Syndromes.a

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>APS-1</th>
<th>APS-2</th>
<th>IPEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main manifestations</td>
<td>Addison’s disease, hypoparathyroidism, chronic mucocutaneous candidiasis</td>
<td>Addison’s disease, autoimmune thyroid disease, type 1 diabetes</td>
<td>Autoimmune enteropathy, neonatal type 1 diabetes, eczema</td>
</tr>
<tr>
<td>Other, associated manifestations</td>
<td>Primary ovarian insufficiency, autoimmune thyroid disease, type 1 diabetes, gastritis, enteritis with malabsorption, hepatitis, pancreatitis, pneumonitis, nephritis, villitis, alopecia, nail dystrophy, enamel hypoplasia, keratitis, retinitis</td>
<td>Autoimmune gastritis, alopecia, vitiligo, celiac disease, primary ovarian insufficiency</td>
<td>Autoimmune thyroid disease, hemolytic anemia, thrombocytopenia</td>
</tr>
<tr>
<td>Typical age at onset</td>
<td>Childhood, adolescence</td>
<td>Adolescence to adulthood</td>
<td>Infancy</td>
</tr>
<tr>
<td>Prevalence</td>
<td>1:100,000</td>
<td>1:1000</td>
<td>1:1,000,000</td>
</tr>
<tr>
<td>Treatment</td>
<td>Hormone replacement, antifungal therapy, immunosuppressive therapy for hepatitis, malabsorption, nephritis, pneumonitis, keratitis</td>
<td>Hormone replacement</td>
<td>Hormone replacement, bone marrow transplantation</td>
</tr>
<tr>
<td>Complications, including death</td>
<td>Adrenal and hypocalcemic crises, cancer in mouth and esophagus</td>
<td>Adrenal crisis, complications of diabetes</td>
<td>Infections</td>
</tr>
<tr>
<td>Genes and mode of inheritance</td>
<td>AIRE, autosomal recessive and dominant</td>
<td>Polygenic: MHC and others</td>
<td>FOXP3, X-linked</td>
</tr>
<tr>
<td>Immune phenotype</td>
<td>Autoantibodies against interferon-ω and interferon-α (>95%), organ-specific intracellular proteins</td>
<td>Autoantibodies against 21-hydroxylase, GAD65, IA-2, thyrotropin receptor, TPO</td>
<td>Autoantibodies against GAD65, lymphoepithelioma, eosinophilia, overproduction of cytokines, hyper IgE</td>
</tr>
</tbody>
</table>

a AIRE denotes autoimmune regulator; APS-1 autoimmune polyendocrine syndrome (APS) type 1; APS-2 APS type 2; FOXP3 forkhead box P3; GAD65 glutamic acid decarboxylase 65; IA-2 islet antigen 2; IPEX X-linked immunodysregulation, polyendocrinopathy, and enteropathy; MHC major histocompatibility complex; and TPO thyroid peroxidase.

The New England Journal of Medicine
Downloaded from nejm.org by RHONDA KOST on March 26, 2018. For personal use only. No other uses without permission. Copyright © 2018 Massachusetts Medical Society. All rights reserved.
With the use of high-throughput DNA sequencing, other unique monogenic syndromes with endocrine components have been characterized. Common to most is that Treg function is aberrant, giving rise to IPEX-like phenotypes. Some examples are loss-of-function mutations in \(\text{STAT5B} \), \(\text{ITCH} \), and \(\text{BACH2} \) and gain-of-function mutations in \(\text{STAT1} \) and \(\text{STAT3} \) (see Table S2 in the Supplementary Appendix for details). An autosomal dominant syndrome characterized by hemolytic anemia, pneumonitis, lymphadenopathy, and hypogammaglobulinemia has been mapped to rare variants in the \(\text{CTLA-4} \) gene that appear to destabilize Treg function and activity. However, the clinical presentation in affected patients is much milder than in patients with IPEX. A kindred with a similar clinical presentation was described in which the affected patients had mutations in the lipopolysaccharide-responsive

Figure 3. Diagnostic Evaluation for Autoimmune Polyendocrine Syndromes.

Patients with a clinical phenotype suggestive of APS-1 (upper right box) should be screened for interferon autoantibodies before autoimmune regulator gene (\(\text{AIRE} \)) sequencing is performed. Since interferon autoantibody screening currently is available only in research laboratories, consider going directly to sequencing of \(\text{AIRE} \). Patients with a clinical diagnosis of APS-1 should have \(\text{AIRE} \) sequenced for mutations. Combined immunodeficiency (CID) is due to hypomorphic recombination activating gene (\(\text{RAG} \)) mutations (such as those that occur in the Omenn syndrome) and combined cellular and humoral immune defects with granulomas. MG denotes myasthenia gravis, OSAD organ-specific autoimmunity, and POI primary ovarian insufficiency.
beige-like anchor (LRBA) gene. The mutant LRBA protein alters proper cellular trafficking of CTLA-4. Treatment with a fusion protein composed of the Fc fragment of human IgG1 linked to CTLA-4 (abatacept), which binds to the ligands of CTLA-4, appears to be effective in controlling symptoms in affected patients. Several pedigrees have been identified with activating mutations in the gene STAT3, which encodes an important signaling molecule that helps to polarize type 17 helper T (Th17) cell responses (Fig. 2C). Autimmune thyroid disease, hemolytic anemia, and autoimmune thrombocytopenia frequently develops in affected patients.

AUTOIMMUNE POLYENDOCRINE SYNDROME TYPE 2

APS-2 is far more common than the syndromes already discussed. Patients with APS-2 have courses characterized by at least two of the following three endocrinopathies: type 1 diabetes, autoimmune thyroid disease, and Addison’s disease. Some authors propose splitting this syndrome into further subtypes, but there is little evidence for distinct causes in such subcategories, so the broader term APS-2 for all these patients seems appropriate. Women predominate among patients with APS-2. In many affected patients, other autoimmune conditions develop, including celiac disease, alopecia, vitiligo, primary ovarian insufficiency, and pernicious anemia (Table 1). Additional manifestations are more frequent among patients with APS-2 who have Addison’s disease.

The picture emerging from genetic studies of APS-2 is that the same genes and single-nucleotide polymorphisms are associated with several organ-specific autoimmune diseases. Thus, there are more similarities than specific differences when it comes to genetic associations. In general, associations are mostly to genes coding for key regulatory proteins in the adaptive and innate immune system, particularly in the major histocompatibility complex. For example, patients with APS-2 who are at risk for celiac disease generally have variants in DR3-DQ2 and DR4-DQ8, and these same haplotypes confer a risk of type 1 diabetes, autoimmune thyroid disease, and Addison’s disease. This explains why all four diseases may develop in the same patient. Other genes associated with a well-established risk of APS-2 include those that encode CTLA-4, protein tyrosine phosphatase, nonreceptor type 22 (PTPN22), the transcriptional regulator protein BACH2, and the CD25–interleukin-2 receptor. We find it interesting to note that missense and nonsense mutations in the coding region of several of the genes noted here cause monogenic syndromes (Table S2 in the Supplementary Appendix), pointing to their key role in immune regulation.

Despite the major advancement in the identification of disease genes, the heritability of APS-2 is complex. Erichsen et al. found that approximately 10% of patients with APS-2 and Addison’s disease had a relative with adrenal insufficiency. Another study showed that approximately 10% of patients with APS-2 and type 1 diabetes had a sibling with the same disease, and an even larger percentage had a sibling with autoimmune thyroid disease.

The onset of APS-2 typically occurs in young adulthood, later than the onset of APS-1. Currently, there are no unique tests to detect APS-2 in patients, but testing for autoantibodies may be helpful in assessing disease risk, since the relevant autoantibodies are frequently detectable years before disease onset. Examples are antibodies to thyroid peroxidase in autoimmune thyroid disease, glutamic acid decarboxylase 65 in type 1 diabetes, and to 21-hydroxylase in autoimmune Addison’s disease (Table S1 in the Supplementary Appendix).

IMMUNE CHECKPOINT BLOCKADE AS A NEW TRIGGER FOR AUTOIMMUNE POLYENDOCRINE SYNDROMES

There has recently been rapid development in the use of therapeutic antibodies to activate the immune system to treat cancers. For example, therapeutic antibodies are being used to target the key regulators of peripheral immune tolerance — CTLA-4 and programmed cell death 1 (PD-1). The wider use of monoclonal antibodies in cancer treatment has revealed that autoimmune, induced side effects develop in some patients. For example, colitis is common, and autoimmune thyroiditis has frequently been seen in patients treated with both CTLA-4 and PD-1 immune checkpoint blockade, with an incidence of more than 10%. Another remarkable side effect is autoimmune hypophysitis, otherwise a very rare disease, in patients treated with anti-
null
damage occurs. Work is currently under way to generate thymic epithelial tissue from stem cells.7 This approach could eventually be used to
correct the expression of AIRE in patients with
APS-1 and help reverse the immunopathological
course that leads to multorgan autoimmunity.

Dr. Huseby reports receiving grant support from the
Novo Nordisk Foundation, provision of drugs from GlaxoSmithKline,
and lecture fees and consulting fees from Shire; Dr. Anderson,
owning stock in Medtronic; and Dr. Kämpe, receiving grant sup-
port from the Torsten and Ragnar Söderberg Foundations and
Novo Nordisk Foundation, serving as a board member for and
being a unpaid consultant for Shire, and holding a pending patent (PCT/SE2015/051189)

Disclosure forms provided by the authors are available
with the full text of this article at NEJM.org.

We thank Drs. Cindy Wong, Mickie Cheng, and Marianne
Oksnes for critically reading an earlier version of the manuscript.

REFERENCES

1. Schmidt MB, Eine biglandulare Erkrankung (Nebennieren und Schildrüse) bei
2. Finnish-German APECED Consortium. An autoimmune disease, APECED, caused
by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat
Genet 1997; 17: 399-403.
4. Huseby ES, Perheentupa J, Rautemaa R, Kämpe O. Clinical manifestations and
management of patients with autoimmune polyendocrine syndrome type I. J Intern
5. Ahonen P, Mylläriemi S, Siipilä I, Per-
heentupa J. Clinical variation of auto-
immune polyendocrinopathy-candidiasis-
edectodermal dystrophy (APECED) in a
322: 1829-36.
7. Ferre EM, Rose SR, Rosenzweig SD, et al. Redefined clinical features and diag-
cnostic criteria in autoimmune polyendo-

crinopathy-candidiasis-edectodermal dystro-
phy (ICSI Insight) 2016; 13: e88782.
8. Orlova EM, Sozaeva LS, Kareva MA, et al. Expanding the phenotypic and geno-
typic landscape of autoimmune polyendo-

9. Pollak U, Bar-Sever Z, Hoffer V, Mar-
cus N, Scheuerman O, Garty BZ. Asplenia and
functional hypoinsulinism in autoimmune
10. Gutierrez MJ, Gilson J, Zacharias J, Ishmael F, Bingham CA. Childhood poly-
arthritis as early manifestation of autoimmune
polyendocrinopathy with candidiasis
11. Perheentupa J. Autoimmune polyendo-

crinopathy-candidiasis-ectodermal dystro-
12. Halonen M, Eskelin P, Myhre AG, et al. AIRE mutations and human leukocyte anti-
genotypes as determinants of the auto-
immune polyendocrinopathy-candidiasis-
incidence patterns in patients with isolated
or combined autoimmune primary adreno-
15. Gardner JM, Devoss JJ, Friedman RS, et al. Deletional tolerance mediated by
16. Malchow S, Leventhal DS, Nishi S, et al. AIRE-dependent thymic development of

T cell epitope reveals convergence on a
dominant autoantigen. Immunity 2017;
18. Brusurud O, Ofstedal BE, Wolff AB, Huseby ES. AIRE-mutations and autoim-
une disease. Curr Opin Immunol 2016;
43: 8-15.
19. Proust-Lemoine E, Saugier-Véger P, Le-
franc D, et al. Autoimmune polyendocrine
syndrome type 1 in north-western France: AIRE gene mutation specificities and severe
forms needing immunosuppressive ther-
lator gene in an Italian kindred with auto-
immune polyendocrinopathy-candidiasis-
edectodermal dystrophy, acting in a dominant
fashion and strongly cosegregating with
hypothyroid autoimmune thyroiditis. J Clin
Endocrinol Metab 2001; 86: 4747-52.
pune regulator AIRE are associated with
common organ-specific autoimmune dis-
es. Immunology 2015; 142: 1185-96.
arises from a second, more frequent vari-
ant within the SAND domain of autoim-
pune regulator (AIRE). J Autoimmun 2017
November 9 (Epub ahead of print).
23. Alimohammadi M, Björkling P, Hall-
gren A, et al. Autoimmune polyendocrine
syndrome type 1 and NALP5, a parathy-
roid autoantigen. N Engl J Med 2008; 358:
1018-28.
24. Shum AK, Alimohammadi M, Tan CL, et al. BPIFB1 is a lung-specific autoanti-
gen associated with interstitial lung dis-
25. Alimohammadi M, Dubois N, Sköld-
b erg F, et al. Pulmonary autoimmunity as
a feature of autoimmune polyendocrine
syndrome type 1 and identification of
KCNRG as a bronchial autoantigen. Proc
26. Landegren N, Sharon D, Shum AK, et al. Transglutaminase 4 as a prostate auto-
antigen in male subfertility. Sci Transl Med
27. Bækkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64k autoanti-
gen in insulin-dependent diabetes as the
GABA-synthesizing enzyme glutamic acid
28. Qinqvist O, Karlsson FA, Kämpe O.
21-Hydroxylase, a major autoantigen in
of 10 defined autoantibodies in autoim-
pune polyendocrine syndrome type 1 J Clin
Endocrinol Metab 2004; 89: 557-62.
autoimmune polyendocrinopathy syndrome

31. Dalin F, Nordling Eriksson G, Dahl-
qvist P, et al. Clinical and immunological
characteristics of autoimmune Addison’s
disease: a nationwide Swedish multicenter
study. J Clin Endocrinol Metab 2017; 102:
379-89.
syndrome, thymoma, and an AIRE defect.
and serologic parallels to APS-1 in
patients with thymomas and autoantigen
transcripts in their tumors. J Immunol
2014; 193: 3880-90.
34. Walter JE, Rosen LB, Csomos K, et al. Broad-spectrum antibodies against self-
antibodies and cytokines in RAG deficiency.
35. Kisand K, Bøe Wolff AS, Podkrajsek
K, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients
 correlates with autoimmunity to Th17-

Copyright © 2018 Massachusetts Medical Society.